MARROW 2024 NEET-SS

0

0

0

0

UPDATED PEDIATRICS NOTES

BIOSTATICS

INTRODUCTION TO DATA IN **BIOSTATISTICS**

uses:

- · Define cut-offs.
- understand variation.
- To present data.
- * To make inference (provide evidence).

Data

00:07:54

Quantitative	Qualitative
Continuous.measurable.	Discrete.Countable.
 E.g. weight, height, AST, ALT levels. 	 E.g. No. of people who are sick/
 mean of data can be calculated. 	healthy, alive/dead. Gender.
	 Proportions/ percentages can be calculated.

Pulse rate is a data which is discrete and countable, however it is quantitative as we calculate its mean. BP is quantitative data.

0 0

Interval type of data:

Example: 20 °C is not half as hot as 40 °C, but colder compared to 40 °C. Here the intensity of data is measured. Also, the temperature can go below 0 °C (in minus °C), which means there is no absolute zero.

Ratios:

Example: A weak fragile child weighs 20 kg when the ideal weight should have been 40 kg in the same age group. The ideal weight is 2 x child's age, which means the values can be expressed in multiples (double, triple) of each other i.e calculation of ratios is possible.

Also, there is absolute zero/ no value below zero.

MEASURES OF CENTRAL TENDENCY AND VARIATION

Measures of Central tendency

00:01:59

mean:

- L. Arithmetic mean :
 - Average = Σ (summation)

n

- a. Geometric mean:
 - · Calculated in case of : Exponential data.

Extreme values.

· Example: Human development index

(India = 0.647, ranked at 129 in 2019)

- 3. Harmonic mean :
 - · Calculated in case of: Inverse data.

Fractional values.

Advantages:

- · Best measure of central tendency.
- Easiest to calculate.

Disadvantages:

· most affected by extreme values.

median:

Central value after arranging in ascending or descending order.

Advantages:

· Least affected by extreme values.

mode:

The most frequently occurring value.

mode = 3 median - a mean.

Advantages:

- The most robust measure of central tendency.
- The last to be affected by extreme values.

Data with extreme values: Preferred measure is median.

Preferred mean is geometric mean.

Column specie

000000

- 1. Range:
 Range = maximum to Minimum.
- a. Standard deviation:Gives the mean deviation of every value from the mean.Formula: The root of the mean of squared deviation.

$$SD = \sqrt{\frac{\sum (x - \bar{x})^a}{D}}$$

in case of a small sample,

SD =
$$\sqrt{\frac{\sum (x - \bar{x})^a}{n - 1}}$$
 $n - 1$ is the correction for the small sample (n < 30).

- 3. Variance:

 Variance (V)= 50^a $V = \frac{\sum (x \bar{x})^a}{n}$
- 4. Coefficient of variation (CV):
 Absolute variation between a different populations.

5. Standard error:

Gives the error in different studies in terms of standard deviation.

Alternatively, gives the variation between values when different researches are done.

- a. Standard error for mean:
 - · For quantitative data.
 - SE_m = $\frac{SD}{\sqrt{D}}$

Measures of Central Tendency and Variation

b. Standard error for proportions:

- · For qualitative data.
- * SE = PQ

P: Prevalence.

Q: 100 - prevalence.

n : Sample size.

If p-value or Confidence interval is provided as input, Standard error has to be calculated and not the Standard deviation.

NORMAL DISTRIBUTION CURVE

Normal distribution curve

13

80:00:08

It represents the distribution of data in a bell-shaped curve, in a large sample.

Eg: The weight of students in the class.

Features of Normal distribution curve:

It is also known as the Gaussian distribution curve.

It is a bilaterally symmetrical bell-shaped curve.

The ends never touch the baseline.

mean = median = mode -> Coincide at 0 or the centrepoint.

SD = L

AUC = 1 (Area Under Curve), means the whole population is accounted for.

Eg: mean Hb (\tilde{x} Hb) at a place = 10 gm% \pm a g%. Where 150 = a g%

COM SONO

Between the -150 and +150:48% of the population lies. Between the -350 and +350:95% of the population lies. Between the -350 and +350:99% of the population lies.

eg: mean blood glucose = 90 ± 10 SD.

How much of the population will be expected to fall between:

- 80 to 100 mg/dl = 68% population.
- 70 to 110 mg/dl = 95% population.
- 70 to 100 mg/dl = 68% + 13.5 % population [(95-68)/a=13.5]
- more than 70 mg/dl = 100 2.5 % = 97.5% population.
- · Less than 100 mg/dl = 84% population (100-13.5+2+0.5).
- · more than 100 mg/dl = 16 % population.
- Less than 60 mg/dl = 100 99 = 1/2 = 0.5% population.
- Less than 120 mg/dl = 100 0.5 % = 99.5% population.

-

Normal Distribution Curve

Q. The mean blood glucose from 5929 ANC females in the state of maharashtra was found to be 130 \pm 5 mg/dl. The cut off for diagnosing 6DM was kept as higher than 140 mg/dl. How many pregnant females are expected to be 6DM diagnosed?

A. < 50.

U

0000000

C. 100 to 200.

B. 50 to 100.

D. 200 to 500.

To be 60M diagnosed, they must belong to above + 2 SD of population.

Above +a SD = 100 - 95% (between +a and -a SD) - 2.5% (less than -a SD) = 2.5%

a.5% of $5989 \sim 150$ females, which falls under range of 100-200.

Second assumption: Zone of Normalcy 00:20:51

Zone of normalcy/normal zone : Between the -a SD and +a SD = 95% of population.

Z. score :

It is also called standard deviate.

It gives the location of the value in terms of the standard deviation (SD).

The cut off for 2 score: \pm a SD/ \pm 1.96 SD.

If the 2 score is > a: Abnormal 2 score.

2 score 25: It lies 25 SD away from the mean

Biostatistics

CONCEPT OF PROBABILITY VALUE

P value

U

0

0

00:01:05

P value:

Probability value (chance of events expressed in decimals).

Normal value ranges from 0 to 1.

0: Lowest probability.

1: maximum probability.

Standard errors (SE):

±1, ±2, ±3,...

confidence limit/interval:

+1 to -1 = 68% confidence interval.

+a to - a = 95% confidence interval.

+3 to -3 = 99% confidence interval.

In the normal distribution curve:

The highest probability is towards the centre: I. The lowest probability lies on either side of the curve. At +a to -a standard deviation the P value is: 0.05 - 2 one of normalcy.

Example: Randomised clinical trial - two groups A and B

The collected data is incorporated in a machine : Gives ${\sf P}$ value.

If the P value is 0.02: Abnormal/out of the normal zone.

P value > 0.05	P value < 0.05 Abnormal variant	
Normal variant		
Non-significant	significant	
No effect found	Effect is found	
Null hypothesis : Accepted	Null hypothesis : Rejected	

P value - normal zone and changes

00:16:42

The normal zone for P value - 95% confidence interval.

If the normal zone moved from 95% to 68%:

Previously non-significant becomes significant.
Chances of finding an effect increases.
The chances of reject of null hypothesis increases.
The chances of alpha error increases.

If the normal zone moves from 95% to 99%:

Previously significant becomes non-significant.

The chances of finding an effect decreases.

The chances of accepting of null hypothesis increases.

**Phelichances of beta errors increase.

Alpha error, type I & II error

00:23:08

Definition:

U

0

It is the probability of finding an effect (just by chance) which in reality does not exist.

It corresponds to the P value/confidence interval/limit.

Example: P value of 0.02 corresponds to a value 2%.

It means there is 2% chance of error in the study.

It also means there is 98% of confidence in the study.

68% corresponds to 32% alpha. 95% corresponds to 5% alpha. 99% corresponds to 1% alpha.

FPER: The chance of finding disease in a healthy patient.

Type I error:

Rejecting a null hypothesis, which in reality is true.

Tupe II error:

Accepting a null hypothesis, which is false in reality.

TESTS OF SIGNIFICANCE

Statistical mathematical formula to derive a p-value. Determines if P-value is significant or non significant.

Types of tests of significance

00:02:59

Types

I. Farametric Quantitative a. Non-parametric

Qualitative

Normal distribution data.

Non-normal distribution data

Parametric test	Situation	Non-parametric test
Paired 4" test.	single group	me nerman's test
unpaired 4 test N/VA Independent sample 4 test.	Two groups	Chi square test (χ^4).
Analysis of variance (AUOVA)	Three or more groups	Mruskal-walls test. Chi square for trend.

Advance tests of significance

00:08:59

- Large sample (n > 30) = '2' test.
- · Ordinal data: wilcoxan rank test (w/R)

w/R sign test

w/R sum test

For grouped data

For ungrouped data

- . Mormalcy of data: Holmogorov smirnov test.
- Outliers : Dixon's Q test.
- Internal consistency of questionnaire: Cronbach's it score
- Compare a new test with a gold standard test: Markt altman analysis.

-

U

· Level of agreement : MAPPA test.

Formula = Observed level of agreement - expected level of agreement | 1 - expected level of agreement

CORRELATION, REGRESSION AND SKEW

Correlation

00:00:13

Relation between a variables. Scatter plots are used.

- alea known as Pearson-Karl correlation.
- · Represented by : r
- * Range : -1 to +1
 - -1: Perfect negative correlation.
 - H: Perfect positive correlation.
 - r = 0: No correlation.

- Also known as non-linear/
 Spearman correlation.
- · Represented by : P

Scatter plots

0

0

0

- +1: Perfect positive correlation () unit change in x axis = 1 unit change in Y axis).
- > 0.7: Strong positive correlation.
- 0.5 0.7: moderately positive correlation.
- < 0.5 : Weak correlation.
- < 0.3 : very weak correlation.

Coefficient of determination (CD):

The percentage change in one variable which is accounted for by a unit change in another variable.

CD = r2 in %.

Regression

00:18:26

Primarily refers to prediction.

Types:

- 1. Linear: If variables as quantitiative.
- a. Logistic: If variables are qualitative.
 - 1. Univariate linear regression:
 - eg: Predicting renal failure based on GFR.
 - a. Univariate logistic regression:
 - eg: Predicting mi based on obesity levels.
 - 3. multivariate linear regression:
 - Eg: Predicting the renal status based on serum Na, urea, creatinine and GFR levels.

venne abac

4. Multivariate logistic regression:

Eg: Predicting the presence or absence of mil based on smoking and obesity levels, family history.

Linear regression, y = a + bx.

y: Dependent variable.

a: Regression constant.

b: Coefficient of independent variable/slope of curve

x: Independent variable

Skew

00:24:36

Describes a non normal distribution.

* Left skew (Direction based on the tail end):

mean < median < mode (looking towards the left).

· Right skew :

mean > median > mode (looking towards the right).

A: mode

8: median

C: mean

Since it's a right skew, mean > median > mode.

Biostatistics

U

000

Skew and Box and Whisker (quartile):

Each whisker: 25%

The box : 50%, each part : 25%

Conventionally if nothing is mentioned, left side is taken as the low side of the variable.

Cannot comment about the skewness (deviated median).

SAMPLING METHODS AND CALCULATION

Sample:

- · Quantity (calculation).
- · Quality (sampling methods).

Both should be sufficient to represent the population.

Sampling methods

00:01:12

Tupes:

- 1. Non-probability/Non-random sampling:
 - a. Convenience sampling:
 - · Easy to perform.
 - . Chance for selection bias.
 - may not be representative of total population.
 - b. Quota sampling:
 - · Predefined set of rules for sampling.
 - · Chance for bias.
 - c. Purposive sampling:
 - · There is a secondary intention.
 - d. Snowball sampling:
 - · Rapidly increasing.
 - For example: 3 people bring 3 people each and in turn the new 3 people bring another 3 each.
 - Preferred in case of diseases with social stigma (hidden diseases): Alcoholism

IV drug abuse male to male Transgenders