Ophthalmology

U

Table of Content

0

	Cha	pter Name P	age No.	Cha	pter Name	Page No.
	Opt	ics		6.4	Anisocorias	222
	1.1	Optics of Eye and Refractive Errors	143	6.5	3rd, 4th, & 6th C.N. Palsy	228
	1.2	Refractive Errors-Hypermetropia, Aphakia, Astigmatism, Retinoscopy	147	Reti	Retina	
	1.3		153	7.1	Anatomy, Blood Supply & investigatons of Retina	234
	Lens	5		7.2	Diabetic & Hypertensive Retinopathy	241
	2.1	Embryology, Anatomy & Physiology	155	7.3	Vascular Occlusions	248
	2.2	Classification of Cataract & Congenital Catara	act 158	7.4	Retinal Detachment & Retinitis Pigmentosa	255
	2.3	Senile Cataract & Other Adult Cataracts	160		CSR, ARMD, ROP	255
	2.4	Cataract Surgery & Complications	163	Uvea		
	Glan	ıcoma		8.1	Classification of Uveitis & Anterior Uveitis	264
				8.2	Uveitis with Systemic Diseases	267
	3.1	IOP, Aqueous Production & Drainage	Camabiamana		nismus	
	3.2	Congenital Glaucoma	170		Strabismus	271
	3.3	Primary Adult Glaucomas	173	9.1		271
	3.4	Secondary Glaucomas	175	9.2	Types & Treatment of Squint	283
	3.5	Management of Glaucoma	178	9.3	Amblyopia	263
Cornea				Orbit		
	4.1	Anatomy & Physiology & Investigations		10.1	Anatomy of Orbit	285
		in Cornea	184	10.2	Proptosis	293
	4.2	Corneal Ulcers	189	10.3	Thyroid Eye Disease	296
	4.3	Corneal Dystrophy & Transplant	193	10.4	Cavernous Sinus Thrombosis	301
	4.4	Corneal Ectasias & Corneal Degenerations	196	10.5	Orbital Cellulitis	305
(Conji	unctiva		10.6	Retinoblastoma	309
	5.1	Anatomy & Histology, Conjunctivitis-Bacterial Viral, Chlamydial	, 199	Ocula	r Adenexa	
	5.2	VKC & Phlyctenular, Pingeucula & Pterygium Xerophthalmia	204		Ptosis, Entropion, Ectropion & Other Lid Diseases	315
,	Ja			11.2	Anatomy & Diseases of Lacrimal Apparatus	321
1	Neuro Ophthalmology		207	Miscellaneous		
	6.1	Optic Nerve Anatomy & Tests For Optic Nerve		12.1	Miscellaneous	328
	6.2	Papilledema	215		Commounity Ophthalmology	334
	6.3	Optic Neuritis	218			

Section 1

OPTICS

1.1 Chapter

OPTICS OF EYE AND REFRACTIVE ERRORS- MYOPIA

- Total power of eye 58-60 D
- 3/4 is by cornea (45-50D)
- Rest is by the lens (16-17D)
- · Refractive index of air =1.00
- Anything lighter than air = lower RI and anything denser = higher RI
- · Cornea 1.376
- Aqueous -1.336
- Lens 1.396 (nucleus- 1.4; cortex- 1.39)
- Vitreous 1.336

- Lens contributes less to the overall power of eye than the cornea.
- The most important refractive surface anterior surface of cornea

SCHEMATIC EYE / REDUCED EYE

- · Simpler model of the complex optics of the eye.
- Rays pass from cornea to retina through the nodal point, present just in front of the posterior capsule in the lens.

 Any opacity here is most significant. That is why a PSC is visually most significant

Other models:

- 1. Donders
- 2. Gullstrand's

Axes and Angles of Eye

VAO - $Visual \alpha optic$

FOG - Fixation γ optic

KVOP - Visual K pupillary plane

0

REFRACTIVE ERROR

- · Absence of RE Emmetropia
- · Presence of any RE Ammetropia
- · Ametropia can be classified into -
 - 1. Myopia
 - 2. Hypermetropia
 - 3. Astigmatism

Metropia = Measure of eye

MYOPIA

- · Short-sightedness
- Person can see short distant objects without glasses

· A concave (negative) lens is used to correct it

Etiological classification

- 1. Axial myopia
 - · Commonest form
 - Increase in antero-posterior length of the eyeball
- 2. Curvatural myopia
 - · Increased curvature of cornea, lens or both
- 3. Positional myopia
 - Produced by anterior displacement of crystalline lens in eye, eg, Weil Marchesani Syn.
- 4. Index myopia
 - Increase in the refractive index of crystalline lens, associated with nuclear sclerosis (2nd sight of old age)
- 5. Myopia due to excessive accommodation
 - · Spasm of accommodation

Symptoms:

- Short sightedness
- Often leads to exophoria
- Floaters- in high myopia
- Simple Myopia <-6D
- High Myopia >-6D

Pathological Myopia -

- · a/w pathological changes in the eye.
- Due to increase in axial length and curvature of the eyeball, causing stretching of the coats of the eyeball
 - 1. Sclera posterior staphyloma
 - 2. Choroid lacquer cracks (tears or breaks in the Bruch's membrane). Through these cracks, new vessels grow called CNVM (choroidal neovascular membrane)
- Retina when the coat of retina is stretched, there are peripheral retinal degeneration like lattice /paving stone degeneration, holes are formed in these degenerated areas can lead to retinal detachment and in the central part there are foster fuch's spots
- 4. Tigroid Fundus
- 5. Other changes- pseudo proptosis, divergent squint, open angle glaucoma, complicated cataract, spontaneous subluxation of lens

T/t:

- Spectacles/ contact lens (concave lens)
- -1D minifies image by 2%

PINHOLE

To differentiate refractive error and pathological cause for decreased vision

- · If vision improves-Refractive error
- If vision doesn't improve- foveal pathology/ central media opacity

1.2 Chapter

REFRACTIVE ERRORS – HYPERMETROPIA, APHAKIA, ASTIGMATISM, RETINOSCOPY

HYPERMETROPIA

- · Known as Long sightedness
- · Rays are focused behind the retina
- Distant objects can be seen more distinctly than near ones

During accomodation:

- · Ciliary muscles constrict.
- · Ciliary zonules relax.
- · Lens becomes thicker.
- In hypermetropia, the rays pass beyond the retina.
- Thus, accommodation used to see distant objects clearly, but, no accommodation left for near objects.

Etiological Classification

- Axial-axial length ↓
- · Curvatural- Jourvature
- · Index- Cortical sclerosis
- · Positional-posterior dislocation of lens

Symptoms:

- Asthenopia (Tired eyes, headache, watering, mild redness)
- Frontal headaches
- Avoidance of visual tasks, especially at near
- Blurry vision at near
- Intermittent blurring of vision
- Recurrent stye/ chalazion

Signs:

- Eye is shorter than normal
- Shallow anterior chamber
- Predisposed to acute angle closure glaucoma
- Retina appears like silk shot retina
- Optic nerve pseudo papillitis/pseudopapilledema
- Retina shows degenerative retinoschisis (splitting of the retina)

Types:

Refractive Errors - Hypearmetropia, Aphakia, Astigmatism, Retinoscopy

1. Latent hypermetropia:

- Overcome physiologically by the tone of ciliary muscle
- · Amounts to only one diopter
- · Can be revealed only after cycloplegia

2. Manifest hypermetropia:

- Facultative hypermetropia can be overcome by an effort of accommodation
- Absolute hypermetropia cannot be overcome by an effort of accommodation

T/t-

- Spectacles/ contact lens (convex lens)
- · 1D magnifies by 2%

ANISOMETROPIA - difference in refractive error of 2 eyes

ANISEIKONIA- diff in image size seen by 2 eyes.

APHAKIA

- · Causes hypermetropia by 16D
- Aphakia is the absence of crystalline lens in normal anatomical position

Causes of aphakia:

- Post-surgical: signs are limbal scar, AC deep, iridodonesis, jet black pupil, hypermetropic refractive error, hypermetropic disc Corrected by positive lens of + 10-11D
- Post traumatic
- Spontaneous subluxation
- Congenital

Features

- · Anterior chamber deep
- Purkinje images- 2
- Iridodonesis
- · Zero accommodation

Correction- Spectacles/ lens/ IOL

Disadvantages of spectacles (16D)-

- · Image magnification
- · Spherical aberration- pin cushion distortion
- Prismatic aberration— causes Roving ring scotoma/ jack in the box phenomenon

ASTIGMATISM

 If the refractive index is different in different meridia, then it is called Astigmatism

Types:

- · There are two types of astigmatism
 - 1. Regular astigmatism: has two primary meridia out is flattest and other is steepest
 - 2. Irregular astigmatism: no 2 primary meridia, seen in a scar, keratoconus, lenticonus, immature cataract

Regular astigmatism can be further classified into:

With the rule (vertical steeper)

 The two principle meridian are at right angle to one another and Vertical meridian is more curved than Horizontal meridian.

Against the Rule (horizontal steeper)

 The two-principle meridian are at right angle to one another but Horizontal meridian is more cured than Vertical meridian.

Oblique

0

0

0

 The axes are right angles to each other, but lie in neither Horizontal meridian nor vertical meridian

Bioblique

 The axes are both acute and obtuse, but lie in neither horizontal meridian nor vertical meridian

Correction

 Cylindrical lens used. It acts perpendicular to placement

1. Simple Astigmatism:

- One focal point on the retina and the other in front or behind
- Of 2 types simple myopic and simple hyperopic

2. Compound Astigmatism:

- Both the 2 focal points are in front or behind the retina
- Of 2 types compound myopic and compound hyperopic

3. Mixed Astigmatism:

 One focal point in front of the retina and other behind the retina

Eg, refractive error: (retinoscopy values)

- Due to cylinder placed in vertical axis, power of horizontal axis changes.
- Hence, it is compound hypermetropic astigmatism (against the rule)

STRUM'S CONOID

O

- Point A- compound hypermetropic astigmatism
- · Point B- simple hypermetropic
- · Point C, D, E- mixed
- · Point F- simple myopic
- Point G- compound Myopic

RETINOSCOPY

- · Also called skiascopy/ shadow testing
- A beam of light is thrown in the patient's eye and we see the movement of the beam of light in the patient's eye.
- The movement of light depends on the patient refractive error
- · Movement against the motion- myopia
- · Movement with the motion-hypermetropia
- For this, a hand-held instrument called Retinoscope is used
- · It works on a trial and error method
- · End point is the neutralization point

Fig: A hand held instrument called a retinoscope projects a beam of light into the eye during a retinoscopy

3 steps to calculate Refractive error of patient by retinoscopy

- 1. Neutralisation of reflex
- 2. Distance correction
- 3. Cycloplegia correction (atropine: 1D, Cyclopentolate 0.75 / Homatropine 0.5, tropicamide: 0.25D)
- Refractive error of patient = retinoscopy value
 1/distance cycloplegic used
- · Cycloplegia it is the paralysis of ciliary muscles
- Q. Neutralisation of reflex- ie. Retinoscopy values are as follows when done from distance of 1m, no cycloplegic used. Calculate the refractive error.

Answer:

Step1- write retinoscopy values

 Step2 - distance correction would be 1/ distance= 1/1= 1D

Step3 - since no cycloplegic used, no correction

 Hence, type of astigmatism is compound hypermetropic with the rule

TRANSPOSITION OF EQUATIONS:

-2D sphere with -1D cylinder at 180°

Change the axis

Numerically add these with signs
sign= cylinder power

= Sphere power

Answer = (-2-1D) Sphere with +1D Cylinder at 90°

= -3D S with +1D cylinder at 90°

SPHERICAL EQUIVALENT = Half of cylindrical value is added to spherical value

FAR POINT

- · In emmetropia- infinity
- · In hypermetropia- behind the eye
- · In myopia- in front of eye
- Far point = 1/ power; eg, for -2D, far point= 1/2m = 50cm

NEAR POINT

- NEAR TRIAD = Accommodation+convergence+ B/L Pupil constriction
- · Ciliary body constricts thus, zonules relax
- · Changes in eye during accommodation:
 - Anterior lens curvature 1
 - Lens thickness 1
 - Equatorial thickness of lens ↓
 - Anterior chamber becomes shallow
- With age, accommodation ↓, k/a presbyopia
- Range of accommodation= (far point- near point)
- Amplitude of accommodation = Power to focus at near-Power to focus at far
- Eg, -2D myopic with near point 10cm, amplitude = 100/10 2= 8D
- Eg, +2D hyperopic with near point 10cm, amplitude = 100/10 - (-2) = 12 (NOTE: -2 taken because far point is behind the eye)

1.3 Chapter

(

REFRACTIVE SURGERIES

REFRACTIVE CORRECTION OPTIONS

- Cornea keratorefractive procedures (RK, PRK, LASIK, FEMTOLASIK, SMILE, SILK)
- Lens lenticular procedure (ICL, CLE)

KERATOREFRACTIVE PROCEDURE:

- · Radial keratotomy (RK)
- · Photorefractive Keratectomy (PRK)
- · Laser Assisted Insitu Keratomileusis (LASIK)
- Femtosecond Laser Assisted Insitu Keratomileusis (FEMTOLASIK)
- Small Incision Lenticule Extraction (SMILE)
- Small Incion Keratomileusis (SILK)

1. LASIK

Eligibility criteria for surgery:

- · Age >18 years
- · Refraction has to be stable for >1yr
- Corneal thickness >500 microns (residual corneal thickness after LASIK should be >270micron)

• Corneal curvature (keratometry) of 40-47D

Ophthalmic C/I:

- Co-exiting intraocular disease (uveitis, retinal pathology, glaucoma, corneal dystrophy, lenticular disease, dry eye)
- Systemic diabetes (uncontrolled), joint related disease, antipsychotics, long term immunosuppressants / steroids

Mechanism of correction by surgery:

- Flatten the curvature of the cornea refraction at the air corneal interface is delayed and thus, light is focussed at retina myopia correction
- Peripheral flattening and central steepening of cornea - hypermetropia correction
- · Axis based flattening astigmatism correction

USFDA approved limit for refractive error correction:

- Myopia (0.5D-12D)
- Hypermetropia (+6D)
- Astigmatism (6D cylinder)

Correction procedure:

- · Corneal flap (90-130microns thick) created
- Laser done on the bed of the cornea (causes flattening and thinning of the cornea)
- Repositioning of flap
- It is required that 300 micron stromal bed is to be left behind
- 1D myopia correction requires 12-15 microns tissue
- Thus, if 100-150 microns tissue available, correction of 10-12 D of myopia can be done
- If corneal thickness is less than 500 microns, then cornea-based surgeries avoided
- If corneal thickness is <470 microns, then it is absolutely C/I.

Excimer LASER

- Used for LASIK.
- · 193 nanometres wavelength
- Stands for excited dimers (argon and fluoride);
 used in myopia, hypermetropia and astigmatism
- · Myopia laser applied on the central part
- Hypermetropia laser applied on the periphery
- · Astigmatism the steeper axis is flattened

FEMTOSECOND LASIK

- · Flap is created by femtosecond laser
- is a Nd: glass laser
- Wavelength= 1054 nm, frequency = 10-15 second
- Procedure- Photo bubble formation with the laser, lifting of the flap and correction by excimer laser

SMILE

- · Does not use excimer laser
- · Stands for small incision lenticule extraction
- Bubbles are fired in two layers (superficial and deep layer).
- Lens shaped corneal tissue is then removed through a small cut in the cornea and is pulled out.
- · Both the lasers are fired by femtosecond laser

PRK SURGERY

- In thin cornea (<500 microns), instead of lifting a flap, direct excimer laser used on the surface
 k/a surface ablation or photorefractive keratectomy or PRK surgery.
- · Cornea then regenerates from the sides
- There is initial period of haze in the cornea and gradually is recovered.

LENS BASED SURGERY

- 1. Implantable Collamer Lens / Implantable Contact Lens (ICL)
- 2. Clear Lens Extraction (CLE)

1.ICL

- For Patients unfit for LASIK or high refractive error- ICL is done
- Lens is implanted over the normal crystalline lens, Also called as Phakic IOL

2.CLE

- Patients unfit for ICL, high refractive errors
 CLE
- Normal crystalline lens is removed and IOL is implanted in the capsular bag
- · Also called FUKALA'S operation

Section 2

0

0

0

LENS

2.1 Chapter

LENS – EMBRYOLOGY, ANATOMY & PHYSIOLOGY

EMBRYOLOGY

· Lens develops from surface ectoderm.

- From the forebrain- arises an optic stalk
- Optic stalk → optic pit → optic vesicle on the 21st day of gestation.
- Optic vesicle→ forms thickening k/a Lens placode on the 27th day of gestation
- The optic vesicle invaginates to form optic cup and the lens placode starts to enter inside it k/a lens pit.
- Gets pinched off from the surface k/a lens vesicle.
- This separation of lens vesicle from surface ectoderm happens on 33rd day of gestation.
- ANATOMY OF LENS

- · Biconvex shape
- · Anterior surface (radius= 10mm) is flat
- · Posterior surface (radius= 8mm) is more convex.
- Size of lens is 9-10 mm.
- Refractive index 1.376
- Nucleus of lens (centre) is denser ($\mu = 1.40$)
- Cortex (peripheral) is comparatively rarer ($\mu = 1.39$)
- · The entire lens is covered by a capsule
- In the adult lens there is only anterior epithelium present, no epithelium in the posterior surface.
- The mitosis occurs at the equatorial region of the lens.
- The capsule- thickest (14 microns) at the preequatorial region and thinnest (4 microns) at the posterior pole.
- · Capsule is thickest B.M of body

Parts of the lens:

- 1. Capsule
- 2. Cortex
- 3. Nucleus -

- Embryonic nucleus (oldest fibres)- anterior erect Y and posterior inverted Y suture
- Fetal nucleus

- Infantile nucleus (birth to puberty)
- Adult nucleus (puberty to adulthood)
- · Lens fibres are formed throughout the life
- · Youngest fibres are in cortex
- · Thinnest part of lens is posterior pole
- Lens is held in position by the zonules of Zinn/ suspensory ligaments.
- Position- lens is placed in the patellar fossa of vitreous.
- The potential space between the lens and the vitreous is called the Berger space.
- Between the posterior surface of lens and the anterior surface of vitreous is 'hyaloideo capulare ligament' aka 'weigerts ligament'. This is strongest in childhood. So, ICCE is contraindicated in children.

PHYSIOLOGY OF LENS

- · Lens is an avascular structure.
- Metabolism is anaerobic (85%- Kreb cycle; 15%-HMP pathway; traces from sorbitol pathway)
- · Nutrition- is from aqueous humour.
- Antioxidants glutathione, super oxide dismutase, catalase, vit C and vit E.
- Lens is made up of 66% water, 33% protein (highest), 1% electrolytes.
- Na-K ATPase pump prevents hydration of the lens.
- Na+ in aqueous is 144 mmols, K+ is 4 mmols.
- Inside the lens Na+ is 20 mmols and K+ is 120 mmols

2.2 Chapter

CLASSIFICATION OF CATARACT & CONGENITAL CATARACT

Cataract is any opacification of lens which may or may not affect the vision

CLASSIFICATION OF CATARACT ON BASIS OF

- 1. Etiology
- 2. Position of cataract: at the nucleus, cortex, capsule or poles
- 3. Maturity -immature, mature and hyper mature

ETIOLOGICAL CLASSIFICATION

- · Congenital And Developmental Cataract
- · Acquired Cataract
 - Senile Cataract
 - Traumatic Cataract : Blunt, Penetrating, Radiation, Electric Shock, Glass Blowers (Infra-Red)
 - Complicated Cataract (Uveitis Induced)
 - Metabolic Cataract : Diabetes Snowflake,
 Wilson's Disease Sunflower
 - Drug induced Cataract: Corticosteroids, Miotics
 - Cataract Associated with Syndromes

CONGENITAL AND DEVELOPMENTAL CATARACT

Causes of congenital cataract:

- Genetic- AD; genes responsible are: CRY gene (crystalline), CX gene (connexin), MIP gene (Major intrinsic protein)
- · Infectious disease- TORCH
- · Idiopathic

 Metabolic- Galactosemia, hypoparathyroidism, Lowe's syndrome, Fabry's disease

Types of congenital cataract:

- · Punctate (Blue Dot) Cataract-
 - Most common type, aka cataracta punctata cerulea.
 - It is stationary
 - Does not affect vision

- Zonular (Lamellar) Cataract -
 - Most common visually significant cataract
 - Seen in vit D deficiency, hypocalcemia, rubella infection, autosomal dominant diseases
 - Riders are present on lens

