Orthopedics

Table of Content

Section

1.	Basic Science, Orthopedic Anatomy and Imaging in Orthopedics	619
2.	Infections	635
3.	Tuberculosis	643
4.	OrthoPedic Oncology	651
5.	Nerve Injuries	671
6.	General + Upper Limb Traumatology	682
7.	Spine + Pelvis + Lower Limb Traumatology	705
8.	Arthritis	743
9.	Metabolic Disorders of Bone	756
10.	Amputations, Sports injury and Neuromuscular Disorders	772
11.	Pediatric orthopedics	799

1 CHAPTER

0

0000000

0

a

0

0

BASIC SCIENCE, ORTHOPEDIC ANATOMY AND IMAGING ORTHOPEDICS

HISTORY OF ORTHOPEDICS

Introduction and History of Orthopedics

Nicolas Andry

- · Term Orthopedics is coined by Nicolas Andry
- · Ortho-Straight, Pedis-Child
- · Nicolas Andry wrote the 1st book of orthopedics & the emblem of orthopedics

H. O. Thomas (Hugh Owen Thomas)

- · Contributions include
 - Thomas splint
 - Wrench: For correction of Deformities
 - Thomas test: For flexion deformity of the hip
 - Collar: For cervical spine injuries
 - CTEV (Congenital Talipes Equino Varus) Shoes

Important Information

- Father of Orthopedics: Nicolas Andry > H.O. Thomas
- Father of Modern orthopedics: Robert jones

Watanabe

- · Father of Arthroscopy
- M/c joint in which arthroscopy done is: Knee > Shoulder
- · Largest joint in our body: Knee

John Charnley

- · Father of Arthroplasty
- · M/c Joint where Arthroplasty is done: Knee
- · Arthrodesis: Fusion of 2 or more bones in a joint

Image Based question approach

- · Keep optimum distance
- Keep looking don't hurry (20 sec)
- Seeing & believing that you have seen
- · Localize the body part
- · In an image go from normal to pathological area
- · Then look at choices
- · Sometimes you actually don't need an image

Monteggia fracture [Fracture Ulna with Radial head dislocation]

BONE STRUCTURE

Basics

0

000000000

- · Metaphysis
- · Most vascular area of Bone
- · Most common Location for infection & Tumor
- Diaphysis
 - Middle part
 - Ewing sarcoma occurs here.
- · Epiphysis
 - Present towards the end of a Bone
 - Covered by Articular cartilage
- Upper end of bone: Epiphysis + Physis + Metaphysis
- · Middle of bone: Diaphysis

Bone Composition

- 65% Inorganic [(ca)10 (PO4)6 (OH)2]: Calcium hydroxyapatite
- 35% organic (Type 1 collagen)
- · Organic Component
 - Matrix 95% + cells 5%
 - → Matrix composed of Proteoglycans (compressile strength)
 - Proteins
 - → Composed of Collagen: Type 1
 - → Provides Tensile strength
 - → Non-collagen proteins are also present which includes
 - Osteocalcin
 - Osteopontin
 - Osteonectin
- · Bone formation marker
 - Osteocalcin
 - Osteopontin
 - Osteonectin

- Enzymes: Bone specific ALP
- Terms
 - Osteoid: Immature Bone
 - Osteon: Mature (Mineralized) Bone

Skeletal Maturity

- · Age at which the physis disappears and the Epiphysis Fuses to Metaphysis is K/a Age of skeletal maturity
- · Shoulder joint
- · Wrist joint
- · Knee joint
- · Elbow joint
- · Hip joint
- · Ankle joint

Ossify at 16 years of age

Ossify at 18 years of age

Zones of Articular cartilage

- · Zone 1
 - Superficial zone
 - Has high water content (as it is close to joint fluid)
 - Contains
 - → Progenitor cells for articular cartilage
 - \rightarrow High density chondrocytes
- · Zone 2
 - Transition zone: Thickest zone
 - Chondrocytes are in low density
- Zone 3
 - Middle zone
 - Most active chondrocytes
 - Highest density proteoglycans
 - Low density water content
- · Zone 4
 - Calcified cartilage

Epiphysis

0000

0

Types of Epiphysis

- 1. Pressure Epiphysis
 - Intra Articular & Weight Bearing
 - E.g. Head of Humerus, Lower end of radius
- 2. Traction Epiphysis
 - Extra articular
 - K/a Apophysis
 - Severe to pull & site of muscle attachment ossify later than pressure epiphysis.
 - E.g. Greater & Lesser trochanter of femur, and Tubercles of Humerus.

Important information

Rotator cuff muscles

Mnemonic: Sit-s

- Supraspinatus
- Infraspinatus
- Attached to greater tuberosity and causes abduction and external rotation
- Teres minor
- · Subscapularis: Attached to lesser tuberosity and causes internal rotation

Lift off test: to test for a lesion of the subscapularis muscle & scapular instability

- 3. Aberrant Epiphysis
 - Anatomical anomaly
 - Accessory ectopic epiphysis
 - E.g. Head of 1st metatarsal (or) Base of 5th Meta carpal.

- 4. Atavistic Epiphysis
 - Phylogenetically independent but becomes fused.
 - E.g. Coracoid process of scapula.

Growth plate

- · Bridged between Epiphysis & Metaphysis
- · Consist of
 - Resting zone (Reserve)
 - → Storage disorders affects resting zone
 - → E.g. Gaucher disease
 - Proliferative zone (Growth)
 - -> Affecting the dwarfs and giants
 - \rightarrow E.g. Laron syndrome (dwarfs + truncal obesity).
 - Maturation zone
 - → Zone where fractures occurs
 - → Hypertrophic
 - Zone of provisional calcification
 - ightarrow Mineralization disorder like Rickets affects zone of provisional calcification

Important Information

- · Beneath zone of provisional calcification is the Spongiosa
- · Scurvy affects the spongiosa because it affects the cross-linking of collagen

Salter-Harris Classification in children

- · Type 1: Slip of Epiphysis
- Type 2
 - Fracture line through the physis & extending to the metaphysis
 - Most common type
 - Aka Thurston Holland sign
- Type 3
 - Fracture Line through the physis splitting Epiphysis into two
- Type 4
 - Split of epiphysis with metaphyseal fracture

Type 5

0

0

000

Ö

- Crush injury to the physis
- Often normal x-ray as physis is cartilaginous

PARATHYROID HORMONE ON BONE

Remodeling of bone

- PTH acts on its receptor on Osteoblast which release the Rank-Ligand
- Rank Ligand attach to the receptor on the Osteoclast and stimulate it causing remodeling

- · When there is excessive PTH levels
 - E.g. Hyper parathyroidism due to PTH adenoma, there will be H/o Young female with renal stones, abdominal groans (dyspepsia), psychic moans and Bones (Bone pains)
 - Bones: High level of PTH $\rightarrow \uparrow$ stimulation of osteoblast \rightarrow \uparrow release of RANK ligand \rightarrow \uparrow osteoclast stimulation
 - o Osteoclast causes more Lysis o Bones become more hollow K/a Cystica o Cyst is filled with fibrous tissue K/a Fibrosa Cystica, since bone is getting involved its k/a Ósteitis fibrosa cystica
 - When there is blood in it then its K/a Brown tumor (due to blood degradation product giving it brown colour)
- · Treatment of Osteoporosis
- A. Drugs inhibiting the osteoclast
 - → Bisphosphonates
 - DOC for Osteoporosis
 - Rare side effect: It inhibits the remodeling cycle and prolonged usage for many years has a high chance of causing fractures
 - → Calcitonin
- B. Drugs that inhibit the Rank ligand
 - → Estrogen
 - → Denosumab (S/c)
- A. Low dose PTH (20 µg s/c daily) stimulates osteoblast but cannot release RANK ligand, hence, it can be used

for treatment of Osteoporosis

- B. Strontium
 - → Acts on both pathways i.e. Stimulates formation & inhibits resorption as well.
 - → Not preferred because of cardiac side effect

Calcium Homeostasis

- Decreased serum calcium stimulate calcium sensory receptors on parathyroid gland causing PTH release
- PTH action
- 1. On the Bone: Stimulates specific receptors causing bone resorption thereby increasing the serum calcium.
- 2. Stimulate 1 alpha Hydroxylase causing formation of 1,25 (OH)2 D3 which will in turn results in Increased intestinal absorption of calcium.
- 3. Acts on specific receptors on kidney causing Phosphaturia and decreases 5. phosphate

Important Information

- · Any vitamin D deficiency will usually have a secondary hyper parathyroidism
 - Serum PTH will be High
 - Serum phosphate will be low
- · In Renal Rickets (phosphate retention disorder), the phosphate levels in blood will be high

Ball & Socket Joints

- Includes
 - Incudostapedial joint
 - Shoulder joint
 - Hip joint
 - Talocalcaneal-navicular joint

Synovial Joints:

Types of synovial joint	Examples	
Plane	Acromioclavicular Intercarpal Intertarsal	
Hinge	Elbow Interphalangeal	
Pivot (Trochoid)	 Atlanto-axial Superior radio-ulnar Inferior radio-ulnar 	
Condylar	Temporo-mandibular Knee joint	
Ellipsoid	Atlanto-occipital Wrist (radio-carpal) Metacarpo-phalangeal (knuckles)	
Saddle	Malleus-incus joint Sternoclavicular First carpo-metacarpal Calcaneocuboid	
Ball and socket	 Incus-stapes joint Shoulder Hip Talo-calcaneo-navicular 	

• If Abduction & Internal rotation is normal there is no problem with hip & shoulder joints.

Atlanto occipital movement Yes (flexion - Extension)

Atlanto – axial movement Is no (rotation)

APPROACH TO NORMAL X-RAYS

a. Cortex

00000000000

0

0

- · Cortex: bone in the periphery
- · Fracture is a break in the cortex of the bone
- b. Marrow: Central part of a bone
- c. Soft tissue plane
 - · Consists of Muscles & fascia
 - In osteomyelitis, earliest radiological feature is loss of soft tissue plane after 24 hours > periosteal reaction (7-10 days)

d. Joint space

- · Consists of cartilage (not seen on x-rays)
- · Reduction of joint spaces refers to Arthritis
- The medial compartment of the joint is destroyed leading to reduction in joint space & Distal part is deviated medially in osteoarthritis: VARUS
- In Rheumatoid Arthritis Distal part is deviated laterally: VALGUS (Knock knee)
- · X-rays is the first investigation for glass injury
- · Glass is coated with lead which is Radio-opaque

Important Information

- · Break in cortex: Fracture
- Osteomyelitis: Loss of soft tissue planes after 24 hrs. of osteomyelitis and periosteal reaction happens later
- · Tuberculosis loss of curvature of spine> reduced disc space
- · Joint spaces is cartilage (not seen on x-rays) and reduced joint space means arthritis

Shoulder

- · Clavicle is the highest bony landmark in AP X-ray of shoulder
- Ratio between head of humerus & Glenoid 4:1 k/a "Golf ball on a tee"
- In the Infra-clavicular area, the bony landmark palpable is "Coracoid"

Elbow

00000

0

000

0

000

- · Capitulum is the first centre to ossify around elbow
- · Radial head: 2nd centre to ossify
- · Ossification around elbow

Bone	Age of ossification
• C - Capitulum	• 2 years
R - Radial head	• 4 years
· I - Inner / medial epicondyle	6 years
• T - Trochlea	8 Years
O - Olecranon	• 10 Years
E - External / lateral epicondyle	• 12 Years

How to remember

· CRITOE

Wrist

Radiocarpal joint

- In AP view lower end of radius is wider, on it there is a boat shaped bone called as scaphoid and next to it is the moon shaped lunate (Seen on lateral view)
- · The first metacarpal goes anterior
- · Ossification of carpal bone

Bone	Age of ossification
She - Scaphoid	5 years
Looks - Lunate	4 years
Too - Triquetrum	3 years
Pretty - Pisiform	12 years
Try - Trapezium	5 years
To - Trapezoid	5 years
Catch - Capitate	1 years (1st to ossifiy)
Her - Hamate	1 years

How to remember

She Looks Too Pretty Try to Catch Her

Pelvis

- · Sacroillitis: inflammation of sacro-iliac joint: seen in ankylosing spondylitis
- Young man with lower back ache, reduced back movement, decreased chest expansion, HLA B27+ve suggests Ankylosing spondylitis

IMAGING IN ORTHOPAEDICS

Different views in X-ray

1. Von-Rosen view

0

0

0

 \bigcirc

- For developmental dysplasia of Hip
- · Shows Shallow acetabulum
- 2. Swimmer's view

For cervico thoracic junction

3. Judet View

· To view different orientation of acetabulum

4. Open mouth view

• Used for Odontoid fracture and to see upper cervical spine \mathcal{C}_1 and \mathcal{C}_2

5. Shenton's Arch

· Lost in fracture or dislocation (Fracture of pubic rami or dislocation of Hip)

Important views of X-rays

- 1. Broadens View: Subtalar joint Inversion, Eversion ightarrow To walk on uneven ground
- 2. Von Rosen View: DDH
- 3. Swimmers View: Cervicothoracic junction
- 4. Oblique view: Scaphoid
- 5. Judet View: Acetabulum (Pelvis) Tilt the pelvis \rightarrow To see inside the acetabulum
- 6. Open Mouth view: Odontoid
- 7. Shentons Arch: Pelvis

- Order in which investigations become positive in OM: MRI > Bone Scan > X-ray
- Bone Tumors : MRI

Body planes

000000000

0

0

0

CT Scan Osteoid Osteoma (Cortical)

MRI

PCL

Restrict external

rotation

DDH Shallowing of acetabulum. IOC MRI, Screening tool: USG (a) alpha angle decreases in DDH in USG^o

ACL

Restrict Internal rotation

+ Hyperextension

Limping child / Joint swelling

Latest Questions

Bone biopsy

- · After clinioradiological evaluation
- Vertical incision
- Avoid NV structure
- Round/Oval hole
- Periphery
- Multiple sites

Musculoskeletal System

- 1. 1st investigation 2. Next Investigation
- X ray MRI
- 3. Best Investigation
- **Biopsy**

Stress fracture

- I. Overall 2. Unilateral
- MRI MRI
- 3. Bilateral
- Bone Scan

Metastasis

- I. Single 2. Multiple
- MRI PET scan
- 3. Multiple (Osteoblastic) Bone scan

Stress fracture/ SHIN splints

March # - Metatarsal Neck 2nd >3rd

Periosteum:

- Fibrous layer-Useless layer
- Cambium layer

Union-Neck of femur (Absent cambium layer so high chance of Non union) Periosteal reaction-Narrow (benign), Wide(malignant)

Bone tumors-Osteochondroma/

Osteosarcoma

Periosteum → origin of tumor

Should be removed (Extra periosteal resection).

GCT-> Only tumor to involve the joint.

Periosteal Reaction

Non-aggressive reactions are thin, Solid, thick and irregular.

Aggressive reactions are Spiculated, Laminated, Hair on End, Sun burst, disorganised, Interrupted and Codman's

Osteosarcoma Sunray appearance

Osteosarcoma Codman's A

Ewings sarcoma Onion peel apearance

Classical Radiological features*

- Sun ray appearance*/Codman's triangle
- ➢ Onion peel appearance*
- Soap bubble appearance*
- ▶ Patchy calcification*
- ➤ Homogenous calcification

Osteosarcoma but can be seen in any malignant lesion

Ewing sarcoma but can be seen in any malignant lesion or chronic osteomyelitis

GCT (Osteoclastoma) > Adamantinoma

Chondrogenic tumors (Chondrosarcoma > Chondroblastoma)

Osteogenic tumors (Osteosarcoma)

Calcification (CS>CB)> Osteogenic Tumor

INFECTION

2 CHAPTER

OSTEOMYELITIS

Osteomyelitis basics

- Mc organism: Staphylococcus Aureus.
- · Mc location: Metaphysis
- · Mc spread of infection: Hematogenous

Exceptions

- · Sickle cell anemia: Salmonella
 - Salmonella affects the Diaphysis (MC)
 - S. Aureus affects the Metaphysis
- IV drug users: Pseudomonas
- · Foot infection: Pseudomonas.
- · Human bites: Eikenella
- · Animal bite: Pasteurella
- Open injuries: Staph Aureus.

Joint Infections

- Faber at Hip
 - 0-5-year-old, toxic child, Absent movement of joint: septic arthritis (S. aureus)
 - → Diagnosis by X-MAS (X-ray, MRI, Aspirate by Ultrasound guidance)
 - → Treatment: Surgery
 - 6-12 years of age, Non-toxic, decreased movements of joint: Transient synovitis
 - → Diagnosis by X-Mas (X-ray, MRI, Aspirate by Ultrasound guidance)
 - → Treatment: Rest

	Septic Arthritis	Transient Synovitis
FABER	(+)	(+)
AGE	< 5 Years	6-12 years
Movement of Joint	Absent	Decreased

Septic arthritis

Diagnostic criterion (Morrey and associated criterion) 5 out of 6 must be present.

- 1. > 38.3° C temperature
- 2. Swelling of suspected joint
- 3. Pain in joint that increased with movement
- 4. Systemic symptoms
- 5. No other pathological process'
- 6. Satisfactory response to antibiotics therapy
 - Knee is the most commonly affected joint: position is flexion
 - Hip: position is flexion, abduction, and external rotation as this is the position of maximum capacity of
 joint to accommodate pus
 - Treatment
 - Arthrotomy (opening the joint capsule), surgical drainage (decompression), synovectomy and = antibiotics
 (2 weeks IV and 4 weeks oral)
 - No role of conservation management
 - Septic arthritis results in bony ankyloses and it is the most common cause of bony ankyloses

Kocher's criteria

- 1. Inability to bear weight
- 2. Temperature > 38.5° c
- 3. WBC > 12000/ microliter
- 4. ESR > 40MM/HR
 - 1 point means 3% chance of Septic Arthritis
 - 2 point means 40% chance of Septic Arthritis
 - 3 point means 93% chance of Septic Arthritis
 - 4 point means 99% chance of Septic Arthritis

Brodie's Abscess

- Sub-Acute Osteomyelitis > Chronic Osteomyelitis
- Location: upper end of tibia
- Lytic Lesion with sclerotic margin