Radiology

Table of Content

<u>C</u>	hapt	er Name	Page No.
	1.	Introduction to Radiology	347
	2.	X-Ray	352
	3.	CT	356
	4.	MRI	361
	5.	Ultrasound	367
	6.	Contrast Media	373
	7.	GI Radiology	375
	8.	Hepatobiliary Radiology	391
	9.	Genitourinary Radiology	400
	10.	Women's Imaging	410
	11.	Neuroradiology	420
	12.	Respiratory Radiology	440
	13.	CVS RADIOLOGY	452
	14.	MSK Radiology	459
	15.	Nuclear Medicine	476
	16.	Radiotherapy	483
	17.	Radioanatomy	488
	18.	Named X-Rays	495

1 Chapter

0

0

0

0

INTRODUCTION TO RADIOLOGY

Names of scientists and discoveries

WC Roentgen	 Father of radiology 8 November 1895: Discovered X-rays 1901: Nobel prize for the discovery of X-rays International Day of Radiology
Godfrey Hounsefield, Alan Cormark	Discovered CT scan (Housefield unit)
Peter Mansfield Paul Lauterbur	Discovered MRI
Felix Block & Purcell	NMR: Nuclear Magnetic Resonance
Charles Dotler	Father of interventional radiology
Henry Becquerel	Father of radioactivity
Lars Leksell	Gamma knife
John wide	Father of medical ultrasound
Ian Donald	Father of obstetrics ultrasound

Basic Terminologies

	Black	White
X- ray	Lucent	Opaque
CT (dense)	Hypodense	Hyperdense
MRI (intense)	Hypointense	Hyperintense
USG (echoic)	Hypoechoic	Hyperechoic
	Anechoic: Absolutely black	

Mechanism of Action of Ionizing Radiation

DNA damage	Free radicals formation
ds DNA damage (most commonly)	

Ionising Radiation

Rays			Particulate matter ↓
Cosmic	y-rays	X-rays	α particles, β particles, neutrons, protons
Background radiation	RadiotherapyScintigraphySPECTPET	RadiographsFluoroscopyDSACTMammographyDEXA	Radiotherapy

Origin

X- rays	Gamma rays
Extranuclear origin	Nuclear origin (nuclear particle disintegration)

Non-ionising	Ionising: X-rays	Ionising: gamma rays
MRIUSGThermography	 Radiograph CT Fluoroscopy/Contrast studies Eg. IVP/ RGU/MCU/HSG/ERCP DSA Mammography DEXA 	ScintigraphySPECTPET

i i i i i i i i i i i i i i i i i i i	Ionization power/ Linear energy transfer/ Damaging power	Penetrating power
Maximum	particle	Neutrons >y rays
Minimum	y rays	a particle

Effects of Radiation

Stochastic "chance"	Deterministic	
No threshold	Threshold exists	
Delayed	Immediate	
Cancer, genetic mutations	Skin erythema (MC), cataracts epilation	
↑ dose α ↑ probability	severity of side ↑ dose a ↑ severity	
"All or none"	Gradation	

Modality	Dose
CXR	0.02 mSv
Skull X ray	0.07 mSv
Abdomen X ray	1 mSv
Mammography	0.5-0.7 mSv
CT head	2 mSv
CT chest	5 mSv
CT abdomen	10 mSv
PET	10-12 mSv
Barium meal follow through / enema	7-8 mSv
IVP	2-3 mSv

Radiation Units

0 0 0

Entity	SI Unit	Conventional unit
Radioactivity	Becquerel / dps	Curie 1 Ci = 3.7 × 10 ¹⁰ Bq
Exposure	C/kg	Roentgen 1 R = 2.5 × 10 ⁻⁴ C/kg
Absorbed dose / Air kerma (ABG RAD)	Gray 1 Gy = 100 Rad	Rad
Equivalent dose (W _R)	Sv 1 Sv = 100 Rem	Rem
Effective dose (W ₊)	Sv	Rem

Maximum Permissible Dose (AERB)

	Occupational exposure	Public exposure	
Overall	20 mSv/year averaged over 5 consecutive years 30 mSv in any single year	1 m5v/year	
Lens	150 mSv in a year	150 mSv/year	
Skin extremities	500 mSv in a year	50 mSV/year	
Pregnant female	2 mSv/year	1 mSv/year	
Fetus	1 mSv/year	0.5 mSv/year	

TLD Badge

- · Personnel dosimeter
- 3 monthly [sent for measurement in india]
- Made up of: CaSO4: Dysprosium [LiF can also be used]
- · Worn below the lead apron at the level of the chest

Lead Apron

- Minimum thickness: 0.25 mm
 M/C thickness used: 0.5 mm
- Zero Lead Aprons:
 - Made of Ab, Ba, Bi (lighter than usual lead aprons)

Biohazard

Radiation hazard

Abbreviations to know:

- PACS : Picture Archiving & communication systems
- DICOM: Digital imaging & communication in medicine
- · ALARA: As low as reasonably achievable

• RFA: Radiofrequency Ablation (60-100°C)

Applications of RFA:

· HCC

(3)

0

0

0

0

- · RCC
- · Rx of choice in osteoid osteoma
- · WPW syndrome
 - THI: Tissue harmonic imaging (used in USG)
 - HIFU: High intensity focused USG (used for ablation of fibroids)
 - POCUS : Point of care USG
 - BLUE: Bedside lung USG in emergencies
 - FALLS: Fluid administered limited by lung Sonography
 - eFAST: Extended Focussed Assessment Sonography in Trauma

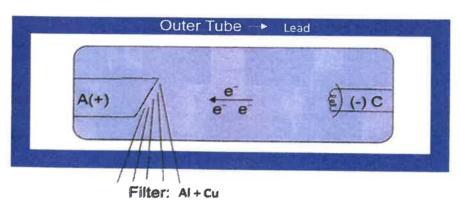
X-ray machine

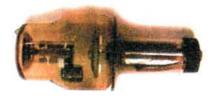
C-arm/Fluoroscopy

MRI

CT

USG machine


Mammography


DEXA scanner

2 Chapter

X-RAY TUBE

Structure	Material
X-Ray tube	Pyrex glass
Cathode (-)	Tungsten + Thorium
Focusing cup	Nickel
Anode = Target (+)	Tungsten + Rhenium
Window	Glass
Filter	AI + CU
Protective housing	Lead

Rotating anode disc is used- to increase the heat dissipation of the X-ray tube

TYPES OF X-RAY TUBE

Stationary	Rotating	
Portable / Ward X-rays	M/C used	
Dental X-rays	Used everywhere else	

Mammographic X-ray Tube vs Normal X-ray Tube

	Mammography	Radiography	
Target	Molybdenum	Tungsten + Rhenium	
Window	Beryllium	Glass	
Filter	Molybdenum	Al + Cu	

Types of Radiography:

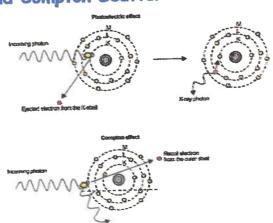
Conventional radiography	Computed Radiography	Digital Radiography	
Film is made up of silver halide (AgBr)	Photostimulable phosphor is used	Amorphous Silicone elec- trodes are used	
Red light is the safe light for the development of these films			

kVP and mAs

0

0

0

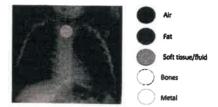

00000

0

Kilo-voltage peak (kVP)	Milli-amperage second (mAs)	
Regulates the velocity of electrons from cathode to anode	Regulates the number of electrons getting released from cathode	
Determines the quality and quantity of X- ray	Determines only quantity of X-ray	
kVP α penetration α 1 / contrast	 mAs α contrast mAs increases blackening of films 	

Obese patient kVP increase Penetration increases [kVP α penetration] Contrast decreases [kVP α 1 / contrast]

Photoelectric Effect And Compton Scatter


Photoelectric Effect

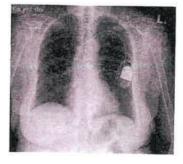
- · Seen with low energy X-rays
- · Yields diagnostic effect
- · Inner shell e is ejected

Compton Effect

- · Occurs with higher energy X-rays
- Results in non-diagnostic scatter radiation
- · Outer shell e is ejected

5 Radiographic Densities

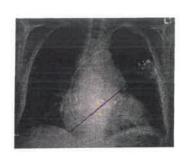
Thumb rules: X-Ray


- Initial investigation for emergencies e.g. Pneumoperitoneum, intestinal obstruction
- Initial investigation for fractures
- Initial investigation for foreign bodies
- Initial investigation for bone tumors
- IOC to know position of medical devices e.g. Position of central line, Nasogastric tube, Pacemaker

Approach to Foreign Body

In profile/ en face: Foreign body is in the Esophagus

Side profile: Foreign body is in the trachea



Pacemaker Leads:

0

0

0

Single chamber: RV Dual chamber: RA + RV

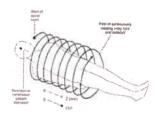
Biventricular (3 leads): RA + RV + LV Location of prosthetic valves on x-ray:

Draw a line from the left hilum, take it to the right CP (cardiophrenic)angle

Above this line : Aortic valveBelow this line : Mitral valve.

Chapter

CT MACHINE


Gantry with X Ray tube and row of detectors Most commonly used: $3^{\rm rd}$ generation CT scanner (Tube rotation with patient translational movement) Pitch: Table movement per rotation / slice thickness

Pitch $\alpha 1/quality$

Pitch a 1/ dose

Single detector CT

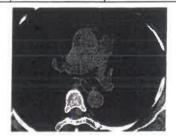
Multiple detector CT (MDCT)

- · Higher speed
- Better 3D/volumetric acquisition

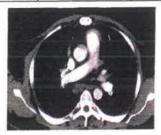
Helical/spiral CT

- Higher speed
- Lower dose

Axial / Transverse


Coronal

Sagittal


HOUNSFIELD UNIT:

Gives objective measurement of blackness / whiteness

1	Air	Fat	Distilled	Soft	Acute	Iodinated	Bone/Ca2+
							1000
	-1000	-10 to -100	water	tissue	J	contrast	1000
1			0	20-30	60-90	100-300	

NCCT

CECT

THUMB RULES-CT

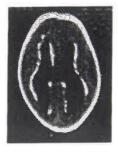
Calcification -IOC: NCCT-

- · Intracranial calcification
- · Renal and ureteric calculi
- · Salivary stones

Bone cortex-IOC: NCCT

- Fractures except stress fractures (MRI-IOC)
- Osteoid osteoma (Other bone tumors MRI IOC)

Foreign body:


- Initial investigation: X-ray
- Best/IOC: NCCT
- · Contraindicated: MRI

Acute Hemorrhage: NCCT


- Acute head trauma (Except DAI-MRI IOC)
- Firstline investigation in stroke

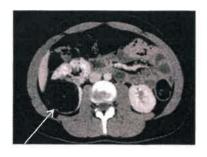
Air-IOC: CT

- · Pneumoperitoneum
- Pneumothorax
- · Pneumomediastinum
- · Pneumocephalus
- · Intestinal obstruction

Periventricular calcification

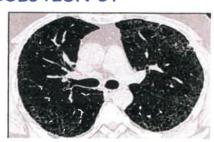
Craniopharyngioma

Peri ventricular calcification	Parenchymal Calcification	Grey-White matter junction
CMV	Toxoplasmosis	Zika virus


Left ureteric calculus

Left eye-metallic foreign body

Acute hemorrhage
(Right-EDH Left-SDH)



Angiomyolipoma

Renal Cyst

HRCT - HIGH RESOLUTION CT

Lung parenchyma HRCT (IOC)

- · Interstitial lung disease
- Bronchiectasis
- · COVID 19 evaluation

IOC for Paranasal sinus IOC for Temporal bones

Volumetric Reconstruction Technique (VRT)

Dual energy CT (DECT)

DECT

0 0

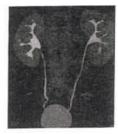
0

0

0

0

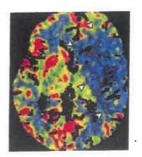
0


Concept: Material decomposition

Applications of DECT:

- Gout
- · Renal / ureteric calculi
- Perfusion map

CT Urography


Acquired 10-15 min after injecting iv contrast to visualize renal collecting system

CT Cisternography

CT Perfusion

- · Used for diagnosing "Penumbra"
- · Physiological parameters of blood flow e.g. blood volume, mean transit time etc can be calculated

Virtual Bronchoscopy

- · Virtual endoscopy can be performed
- · Non-invasive
- · Co2 used for virtual colonography
- · Drawback: Biopsy and interventions cannot be performed

SUMMARY

NCCT

- · IOC for head, spine trauma (Q)
- · IOC for acute SAH (Q)
- · IOC for intracranial calcification (Q)
- · IOC for renal calculi
- · IOC FOR IOFB
- · IOC for bone cortex-Fractures, osteoid osteoma
- Initial Investigation in stroke (Q)

CECT

- · Lung Tumors-Except Pancoast tumors
- · Renal Tumors
- · Pancreatic Carcinoma DPCT
- Liver Tumors -TPCT
- Mediastinal Masses-except posterior
- · Acute Pancreatitis-48-72 hrs

CT angiography

- · Aortic dissection
- · Aortic aneurysm
- · Pulmonary embolism
- Mesenteric ischemia
- Sequestration

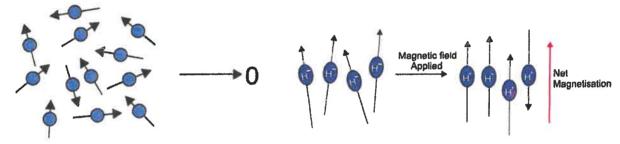
- MRI = Magnetic Resonance Imaging
- · No ionizing radiation is used
- · Best soft tissue and contrast resolution

Concept

0

0

00000


0

0

0

0

NMR - Nuclear Magnetic Resonance

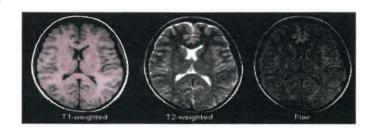
Net magnetization Vector = Zero (At rest)

In the external magnetic field: NMV: along the field \rightarrow Signal generated

- Primary magnetic field: 1.5 T 3T
- RF Coils: generate the RF signal
- Gradient coil: defines the plane of image (axial / coronal / sagittal)

CT vs MRI

CT	MRI	
Cortex: White	Cortex: Black	


Calcifications, Cortex (fractures)

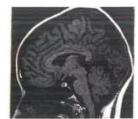
IOC = CT

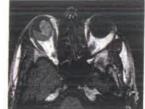
• Bone marrow
• Intervertebral discs
• Spinal cord pathologies
• Ligaments

IOC= MRI

Sequences of MRI

Sequence	T1 weighted	T2 weighted	Flair
FLUID	Hypointense	Hyperintense	CSF-Hypointense Edema-Hyperintense
GRAY MATTER	Hypointense	Hyperintense	Hyperintense
WHITE MATTER	Hyperintense	Hypointense	Hypointense
FAT	Hyperintense	Hyperintense	Hyperintense


(Remember WW2- water is white in T2)


FLAIR

To pick edema in the periventricular area

· Role in: demyelinating lesions: Multiple sclerosis (Dawson fingers)

T1 bright	T2 bright	
Fat	Fat	
Protein rich	Fluid (WW2)	
Keratin		
Cholesteatoma		
Epidermoid cyst		
Craniopharyngioma		
Posterior pituitary		
Melanin		
Gd (MR contrast agent)		
Subacute hemorrhage		

Signal Void

0

0

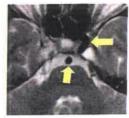
0

0

0000

0

0


0

0

Structures which are hypointense (black) on all sequences of MRI: Not able to generate any signal

- · Blood vessels (arteries): Flow void
- · Cortical Bone
- · Air
- · Calculi

SWI (Susceptibility Weighted Imaging)

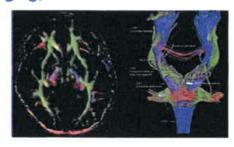
Type of Gradient echo sequence / T2* sequence Black dots s/o hemorrhage known as blooming Sequence of choice for DAI (diffuse axonal injury)

STIR: Short tau inversion recovery

T2W with fat signal suppressed.

Sequence of choice for Bone marrow edema-Osteomyelitis/ Sacroilitis / Stress fracture

Diffusion Weighted Imaging (DWI)


DWI

ADC Map

- · Relies on the concept of Restricted Brownian motion
- · Seen in:
- · Stroke / infarct-Cytotoxic edema: Brownian motion is restricted.
- · Epidermoid cyst
- · Abscess
- · Hypercellular Tumors

DTI (Diffusion Tensor Imaging)

- Concept: Anisotropy: Preferential diffusion along the neurons.
- · Sequence of choice to study white matter tracts
- Used in:
- · Preoperative planning of brain tumors
- Trauma

Tractography: 3D representation of DTI.

MRCP (Magnetic Resonance Cholangiopancreaticography)

- No contrast is needed